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Aspects of the Calibration of a Single
Six-Port Using a Load and Offset
Reflection Standards

G. P. RIBLET, MEMBER, IEEE, AND E. R, BERTIL HANSSON

Abstract —In this contribution some aspects of the calibration of a single
six-port using a load and offset reflection standards are discussed. The
applicability of the methods developed is demonstrated by the successful
calibration of several six-ports including one consisting of a directional
coupler plus a symmetrical five-port junction.

I. INTRODUCTION

LTHOUGH THE THEORY for the calibration of

six-ports using the dual six-port method is well
developed at this time [1], the calibration of these devices
using offset reflection standards is attractive, particularly
in a typical laboratory environment. Problems with the
latter are a) the absence of simple closed form expressions
for the calibration constants [2] and b) insight into what
standards to choose to optimize the calibration over a
given frequency interval. This contribution attempts to
remedy this situation. A third problem of much practical
significance relates to the transferability of the calibration.
It is shown how the calibration constants can be normal-
ized in such a way that a six-port can be recalibrated with a

Manuscript received March 10, 1982; revised July 2, 1982.

G. P. Riblet is with Microwave Development Laboratories, Inc., Natick,
MA 01760.

E. R. Bertil Hansson was with Microwave Development Laboratories,
Inc. He is now with the Division of Network Theory, Chalmers University
of Technology, Gothenburg, Sweden.

good load on the output without the need to go through
a full calibration procedure whenever the device is used in
a different experimental configuration.

II. CHOICE OF OFFSET STANDARDS

If P, is the power measured by the reference detector
and P,,i=1,2,3 the powers measured by the other three
detectors attached to the six-port (see Fig. 1), then the
power ratios P, /Py can be written

o Yi1+2X,.|ru1cos(¢x,_+<1>u)+X,»2|1“u|2
/PR = 142Z|T,|cos (¢, + ¢,)+ Z*|T,|?
i=1,2,3 (1)

where |I',| is the magnitude and ¢, the phase of the
reflection coefficient to be measured [3]. The other quanti-
ties are calibration constants of the six-port, The term
Y i=1,2,3 can be determined from a measurement of a
very good load or a sliding load on the output. If the
reference coupler has infinite directivity and the six-port is
perfectly matched, then Z will be zero and only terms in
the numerator will appear. In general, these conditions will’
be approximately fulfilled so that Z wiil be small and the
denominator will be close to one. Let us assume that Z, ¢,
are known (a procedure is given in the next section for
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SYMMETRICAL
«s——FIVE—PORT
JUNCTION

Reference

s X i=1,2,3,4
Standard 1

Fig. 1. Experimental configuration for the calibration of a six-port
consisting of a directional coupler and a symmetrical five-port junction
by using a load and four offset unit amplitude reflection standards.

determining them), then we can define known quantities
(P,/Pgr) such that

(P,/P)=1+2X,T,Jcos(o, +¢,)+ X|T,%
i=1,2,3. (2)

Notice the symmetry between the magnitude |T,| and phase
¢, of the reflection coefficient and the calibration terms X,
and ¢, in the above equation. Six-port theory tells us what
X, 9,1=1,2,3 to choose in order to determine [T}, ¢,
accurately everywhere. Using the symmetry of the above
equation we may use the same theory to determine what
"L $,(J) to choose in order to determine X ¢y i=1,2,3
accurately. In particular with |[I,|=1 we would need three
standards with reflection phases separated by 120° at
midband. The calibration constants X,cos ¢, , X,sin¢, will
be given linearly in terms of the known quantities
IT,(Neos(9, (/s IT,()lsin(,(j))j=1,2,3. Clearly the
calibration constants will now be determined unambigu-
ously and accurately provided Z, ¢, are known.
Unfortunately, using three standards does not give us
the possibility of determining what Z and ¢, actually are.
For this we need a fourth reflection standard. The above
arguments make plausible the choice of four unit magni-
tude standards with phases separated by 90° intervals. This
choice has been found to work well in practice. Two
possibilities have been found to be of practical interest. For
a six-port which terminates in a TEM transmission line
such as 7-mm line, it has been found to be appropriate to
use an open circuit, a short circuit, and two offset open
circuits—one / unit shorter and one / unit longer than the
first open circuit in order to obtain an accurate calibration
over as great a bandwidth as possible. For a six-port which
terminates in a transmission line with a cutoff frequency £,
such as waveguide, it is appropriate to use four short
circuits spaced at / units. The numerator calibration con-
stants X;cos¢, , X;sin¢, , and i=1,2,3 will be related to
the normalized powers (P,/Pr),, j=1,2,3,4 associated
with one detector but the four different standards by a
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2 X4 matrix. In the case of a TEM line, the matrix is

X,cos g,
X;sing,
1 -1 0 0
=1/4O 0 - 1 1
sin(4wl/\)  sin{(4nl/\)
(P, /Pp);
P /Py );
(2/ R)f i=1,2,3. (3)
(Pz/PR)B
(P./Pr),

Clearly the calibration procedure will not work if
sin(47l/A)=0 in the denominator or if 4w//A =nz. In
particular, a condition on / which insures this won’t hap-
pen in the band from f, to f, is that #/2—4xl/\, =
4ol /N, —7w/2 ot

1=75/(fi+1) (4)
where f, and f, are in gigahertz, / is in millimeters, and
Ay, A, are the corresponding wavelengths. For a calibration
over a 5/1 bandwidth, the terms —1/sin(4wl/M),
1/sin(47l/N) become at the band edges 1/2 their mid-
band values so that this calibration procedure should work
over bandwidths greater than 5/1. In the case of a trans-
mission line with finite cutoff frequency f,

[chowx,l 1
X sin -
S, 4sin2(i7—7—l)
Ag
r—cos8 l s4ﬂl cos§ﬂ - i
AP VA VY
—sin — Ll sinﬂr—l mﬁ—l —si ﬂ ‘
A, }\g,s }\g, sin }\g
(Pt/PR)’l
(P,/Pg)5 s)
(P./Pg),
_(Pt/PR)‘,t

If we wish to calibrate the six-port over the band f; to f,,
then the condition on / becomes 7/2—4wl/X  =4al/\,,
—m/2 or

1=150- (3 1= (/Y +fi1=(L/AY ) (O

where again f; and f, are in gigahertz while / is in millime-
ters. In this case the sin>(4x//A ) term in the denominator
will be nonzero in the band f, to f,.

III.  CLOSED FORM EXPRESSIONS FOR Z, ¢,

Let Ro(i), R(i), R,y(i), R4(i),i=1,2,3 be the measured
normalized powers at the three detectors for four unit
magnitude offset standards with reflection phase angles
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by, 01, 2, 5, respectively, and obtained by dividing From (10)
(P,/Pg) by Y, in 1). It follows fron.l (1) that A, (Z+1/Z)/2+ Apycosd, + Ayzsing, =0
Ri(i) - Ri(i)oosgy = R,(i)sing, 1+27? Ay (Z+1/Z)/2+ Apycosd, + Aysing, = 0
R,(i) R,(i)cosdp, —R,(i)sing, 2Zcos¢, .
R(i) Ry(i)cosds — Ry(i)sing 21Zsiné A3 (Z+1/Z)/2+ Ajcos ¢, + Ayysing, = 0. (12)
’ ’ ? ? ? A solution for ¢, can be generated in three ways, i.e., by

1 cos¢, —sing, | 1+ X? eliminating (Z +1/2)/2 from the first two equations, the
=|1 cos¢, —sing, 2X,cosp, (7) ﬁlftt two equations, or the first and last equations. We find
' a

1 cos¢; —sing, 2X;sing,

¢ = tan,1{A21'A12 — An'Azz}

1+ X7 1+ 2?2 ‘ Ay Ay — Ay A

| 2Xcoso,, | =[B]-| 2Zcos ¢, (8) 1[4y Ay, — Ay Ay,
2Xsing, 2Zsing, ~ tan {A31 Az~ Ay A }

where _ A A — A4y 13
. . . -1 = tan 1 oA —A.A . ()
[B]={Sln(¢1—¢>2)+sm(¢2—~¢3)+sm(¢3-—th)) 1174133 317413
[ sin(¢, —¢3)  sin(p;—¢;)  sin(p,—¢,) The 180°-phase ambiguity that results from (13) is resolved
. . . e . _sin by the requirement that (Z+1/Z)/2 be positive in (12).
sing; —sing,  SNG, SNy SNP 1 Once ¢, has been found, any one of the three equations in
| COS3 —COSP, COS —COS3  COSh, —COSy | (12) will yield a quadratic equation in Z. The three equa-

-R‘(i) cosé,R,(i) —sing,R,(i) tions are of the form
R,(i) cose,R,(i) —sing,R,(i)|. (Zz+1/2)/2=X (14)
| R5(i) cossRy(i)  —singsR,(i) where
The values so obtained for 1+ X2, X;cos ¢, , X,sin¢, can Y= Ajcos¢, + Ajysing,
be substituted into the remaining equation ' l Ay
Ro(i)(14 Z%)+ Ry (i) cos pg2Zcos ¢, __ Apc0sé, + Aysing,
~ R, (i)singy2Zsing, Ax .
=1+ X2 +cos by 2 X,co8 ¢, _ A3zcos¢zA+ As;sing, . (15)
—singy2 X,sin¢, 9) !

The trigonometric identity 1/sin8 = {tan(f/2)+1/tan
to obtain three equations in the quantities 1+ Z2 -(8/2)}/2 may be used to solve for Z. In particular 8 =
Zcos ¢,, Zsin¢,. Unfortunately, it is not possible to obtain  in~1(1/X), Z = tan(8,/2). There will be one solution for Z
a linear solution for Zcos ¢, and Zsin¢, as was the case in  Jess than 1 and one greater than 1 depending on whether 8
Section II. However, a quadratic equation for Z can be s chosen in the first or second quadrant. It is necessary to
obtained and the root with Z <1 selected. In matrix nota- choose 4 in the first quadrant and not the second to make

tion these equations can be written Z <1 since Z is close to zero for most six-ports. A particu-
1+ 72 lar choice of the three solutions given in (13) and in (14)
[4]-| 2Zcosg, | =0 (10) has been found in practice to insure accurate results. In

(13), ¢, can be considered to be the phase angle of any one
of three two-dimensional vectors with x and y components
given by the denominators and numerators, respectively,

2Zsing,

where the components of the 3 X3 matrix 4 are given by

R, (i)— Ry(i) R,(i)— Ry(i) R;(i)— Ry (i)
R, (i)cos¢, ~ Ry(i) R,(i)cosd, — Ry (i) R;(i)cosdy— Ry (i)
— R, (i)sin¢, — R,(i)sing, — R, (i) sing,
sing, —sin¢, —sin (¢, — ¢;) A,
sing, —sing, —sin(¢;—¢,) | = |4, |, i=1,2,3. (11)

sing, —sing, —sin(¢p; — ¢, ) A,
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Fig. 2. Comparison between the experimental values of Z obtained with
this calibration procedure and the measured values of [S),| for a
stripline five-port junction. The values should be the same if a coupler
with infinite directivity is used.

Fig. 3. Picture of waveguide WR90 six-port based on circular coupling
holes.

and with magnitudes

2,y ' N2\ 12
Sl = ((AZIAIZ - A11A22) +(A11'A23 - AZI'AU) )

' 2 2 1/2
S, = ((Am Ay — A31'A22) + (A31'A23 - A21'A33) )

12

(16)
We have taken ¢, to be the phase angle of the vector with
the largest magnitude. Similarly, in (14), X is determined
using the expression with the largest denominator 4,,, 4,,,
or A,,. A simple proof that accurate results for Z can
always be obtained has yet to be found. However, this
method has been used successfully to calibrate several
six-ports including ones consisting of a directional coupler

k 2
S = ((A31’A12 - A11'432)2+ (A" As;— A3, Ay3) )
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Fig. 4. Comparison between values of Z obtained from the calibration
procedure for the device of Fig. 3 using four offset short circuits and
the measured values of |S;;| at the output port.

followed by a nearly matched symmetrical five-port junc-
tion [4]. If the directivity of the coupler is infinite, then it
can be shown that Z=S,;] —the magnitude of the input
reflection coefficient of the reciprocal five-port junction.
As a check on the calibration procedure, |S,| of the
five-port was measured and compared with the values of Z
obtained with the above calibration procedure when a
coupler with better than 30-dB directivity was used. The
agreement given in Fig. 2 is quite good. In order to
demonstrate that the accuracy of the calibration is in no
way related to the use of a symmetrical five-port junction,
we have also successfully calibrated a waveguide six-port
based on circular coupling holes a picture of which is given
in Fig. 3. In Fig. 4 a comparison is given between the
values of Z obtained from the calibration when a coupler
with better than 35-dB directivity was used and the mea-
sured values of |S,,|. Once Z and ¢, have been found, the
other calibration constants must be accurately determined
as explained in Section II. '

IV. RECALIBRATION USING A VERY Goop LoAD

The final section discusses a point of considerable practi-
cal significance—namely the possibility of recalibrating a
six-port when it is used in a different experimental config-
uration without going through a full calibration procedure.
In particular, it will be shown how this may be done with a
very good load or with a sliding load under the assumption
the detector ports are isolated from one another. This
condition is very well fulfilled in the case of the six-port of
Fig. 3 and less well fulfilled in the case of the six-port of -
Fig. 1. If it were necessary to fully recalibrate a six-port
whenever it is used in a new experimental configuration, it
would, in the authors’ opinion, severely limit the applica-
bility of this device because of the operator skill required
to perform the calibration. By storing the calibration con-
stants in a form which allows for recalibration with a load,
the main calibration could be performed at a facility set up
for this purpose and then stored permanently in ROM
memory, for example.
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The basic problem relates to the calibration constants Y’
in (1). If different detectors are used or if different ampli-
fier settings are used than those used to perform the initial
calibration, then these coupling constants will be different.
This would in theory require a full recalibration. However,
these constants are determined uniquely by the powers
measured with a load on the output so that it should be
possible to express the basic calibration in such form that
the six-port can be readily recalibrated with a load. In
order to see how this can be done, it is useful to use the [C]
and [D] matrix notation introduced by Cronson and
Susman [5]. These matrices are four-dimensional matrices
which are the inverse of each other. The elements of the
[D] matrix are used to determine the components of the
reflection coefficient while the elements of [C] are directly
related to the calibration constants given in (1). In particu-
lar

Y® 20X cosg, 2YD-Xsing,  YIX?

(] Y® 2Y@.X,cos¢,, 2YD-Xysing, YOX]
Y® 2Y® . Xycos¢,  2YD-X;sing,  YOX]
/ 2Zcos ¢, 2Zsin¢, z?

(17)

The problem becomes how to determine new components
for [ D] without first having to determine the new compo-
nents of [C] and then inverting a four-dimensional matrix.
Notice that Y multiplies the first row of [C], Y@ the
second row, and Y® the third row. It can be shown that if
a number multiplies a row of a matrix then it will divide
the corresponding column of the inverse matrix. Conse-
quently, the matrix [ D’] which must be stored is the inverse
of

I 2X,cos$, 2X;sing, X7
2X,cos¢,_ 2X,sing,_ X7

[c]= e e 2L (18)
I 2Xjcos¢, 2X;sing,  Xj
I 2Zcos¢, 2Zsing, Z*

The elements of [ D] can then be calculated from those of

[D’] by simple division operations. It can be shown that

the elements of [ D’} satisfy the following two equations:
D+ D,+Di,+D,=0
D}, + D}, + D, + D, = 0.

(19)

As a consequence the number of matrix calibration con-
stants which must be stored is reduced from 11 to 9. The
components of the reflection coefficient can be written as

Do (5, 1)+ 22

(Fz_l)"‘ v

I4

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL, MTT-30, NO. 12, DECEMBER 1982

and
Dl — D, — D, —
3,1(P1‘1)+§%(P2_1)+$(P3’1)
14 14 14
Tsinf =
D, D, _ Di,_
U+ 2P+ 2P+

14 14 14

(20)
where P, is the ratio of P, /Py to the value with a load on
the output. An advantage of this formulation is that the
reflection coefficient is forced to be small for measure-
ments of well-matched devices, i.e., P, =1, This is a com-
mon application. The initial calibration procedure for a
six-port used to measure I' then becomes somewhat analo-
gous to the initial calibration procedure for an SWR bridge
used to measure return loss. In the first instance before
measurements begin a calibration reading with a good load
on the output must be made while for the second a
calibration reading with an open or short circuit on the
output must be made.

V. SUMMARY

A simple calibration procedure for six-ports has been
developed which allows them to be calibrated in a labora-
tory environment using a very good load and four unit
magnitude offset reflection standards. The expressions for
the calibration constants are explicit. The steps in the
calibration procedure can be summarized as follows.

1) Choose the offset length / to conform to (4) or (6)
depending on which is applicable.

2) Determine the calibration constants Y* from the
measurement of a very good load on the output by
using (1).

3) Divide the power ratios (P, /Pz) by Y’ to determine
the normalized powers R(7) used in (11).

4) Evaluate the denominator calibration terms ¢,, Z
from (11), (13), (14), and (15).

5) Use these quantities to determine the normalized
ratios (P, /Pg)’ defined by (1) and (2).

6) Use (3) or (5) depending on which is applicable
to determine the numerator calibration constants
X,cos ¢, , X,sin¢, .

7) Determine the 4 X 4 matrix [C’] from (18).

8) Invert [C’] to determine the 4 X4 calibration matrix
[D’]=[C’]"" whose entries are used to evaluate the
reflection coefficient.
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Efficient Figenmode Analysis for Planar
Transmission Lines

ABDELMEGID KAMAL SAAD, STUDENT MEMBER, IEEE, AND KLAUS SCHUNEMANN, MEMBER, IEEE

Abstract — A unified analysis for planar transmission lines is performed

using the mode-matching technique. Exploiting the fact that the thickness

of the metal coating (fins or strips) is usually very small in comparison to

all other dimensions, the characteristic equations are formulated in'a way’

which preserves the physical meaning of their individual terms. Thus,
simplifications of far-reaching consequences can be introduced for all
eigenmodes showing a cutoff frequency. It is shown in particular that the

higher order modes can be derived approximately from the fundamental -

mode. Moreover, the dispersion relation of fin-lines can be given by a
simple expression because the equivalent dielectric constant linearly de-
pends on frequency. Both steps reduce the computer time by about two
orders of magnitude in comparison to the spectral-domain method.

I. - INTRODUCTION

UMEROUS PAPERS have appeared dealing with a
rigorous solution of the dispersion problem of various
planar transmission lines. Highly sophisticated techniques
“have been developed and applied, one of the most favor-
able being the spectral-domain method in conjunction with
Ritz—Galerkin’s method. Two references may stand for
many investigations: [1], [2]. Common to all of these works
is a time-consuming evaluation of the final relations. Hence,
there are but few papers dealing with an application of the
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eigenmode analysis to circuit problems. This contribution
deals with an approximate and efficient analysis of planar
transmission lines and its application to fin-lines. Usmg the
mode-matching technique, the final equations are for-
mulated in a way which allows introducing some essential
s1mp11flcatlons The main difference to existing methods is
a reduction in computer time of about two orders of
magnitude. Hence, the analysis should be well suited for a
computer-aided design of microwave planar circuifs.

II. ANALYSIS

The structure which has been analyzed consists of an
arbitrary number of metallic strips which are deposited on
either side of a dielectric substrate. This planar circuit may
be mounted either in the H-plane or in the E-plane of a
rectangular box. Hence, the structure can be specialized to
represent a microstrip line, coupled striplines, a slot line, a
coplanar line, a microstrip line with tuning septums, a
bilateral, unilateral, or antipodal fin-line, and a multislot
fin-line. For explaining the calculation procedure, the cross
section of the latter is shown in Fig. 1. The metallic strips
are assumed to have finite thickness. This eliminates, on
one hand, the existence of field singularities due to an edge
condition while it is furthermore realistic at frequencies in
the upper millimeter-wave range [3]. '

The - eigenmode analysis starts with the well-known
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